

Agilent U7243B USB3 Test App

Programmer's Reference

Notices

© Agilent Technologies, Inc. 2006-2015

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

Version 02.01.0000

Edition

April 10, 2015

Available in electronic format only

Agilent Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Book

This book is your guide to programming the Agilent Technologies U7243B USB3 Test App.

- Chapter 1, "Introduction to Programming," starting on page 7, describes compliance application programming basics.
- Chapter 2, "Configuration Variables and Values," starting on page 11, Chapter 3, "Test Names and IDs," starting on page 21, and Chapter 4, "Instruments," starting on page 33, provide information specific to programming the U7243B USB3 Test App.
- How to Use This Book Programmers who are new to compliance application programming should read all of the chapters in order. Programmers who are already familiar with this may review chapters 2, 3, and 4 for changes.

Contents

In This Book 3

1 Introduction to Programming

Remote Programming Toolkit 8

Licensing 9

- 2 Configuration Variables and Values
- **3** Test Names and IDs
- **4** Instruments

Index

Agilent U7243B USB3 Test App Programmer's Reference

Introduction to Programming

Remote Programming Toolkit 8 Licensing 9

This chapter introduces the basics for remote programming a compliance application. The programming commands provide the means of remote control. Basic operations that you can do remotely with a computer and a compliance app running on an oscilloscope include:

- Launching and closing the application.
- Configuring the options.
- Running tests.
- Getting results.
- Controlling when and were dialogs get displayed
- Saving and loading projects.

You can accomplish other tasks by combining these functions.

1 Introduction to Programming

Remote Programming Toolkit

The majority of remote interface features are common across all the Agilent Technologies, Inc. family of compliance applications. Information on those features is provided in the N5452A Compliance Application Remote Programming Toolkit available for download from Agilent here: "www.agilent.com/find/scope-apps-sw". The U7243B USB3 Test App uses Remote Interface Revision 2.80. The help files provided with the toolkit indicate which features are supported in this version.

In the toolkit, various documents refer to "application-specific configuration variables, test information, and instrument information". These are provided in Chapters 2, 3, and 4 of this document, and are also available directly from the application's user interface when the remote interface is enabled (View>Preferences::Remote tab::Show remote interface hints). See the toolkit for more information.

Licensing

To enable programming of compliance applications on your oscilloscope, please visit "www.agilent.com/find/scope-apps" to purchase an N5452A remote programming option license.

1 Introduction to Programming

Agilent U7243B USB3 Test App Programmer's Reference

2 Configuration Variables and Values

The following table contains a description of each of the U7243B USB3 Test App options that you may query or set remotely using the appropriate remote interface method. The columns contain this information:

- GUI Location Describes which graphical user interface tab contains the control used to change the value.
- Label Describes which graphical user interface control is used to change the value.
- Variable The name to use with the SetConfig method.
- Values The values to use with the SetConfig method.
- Description The purpose or function of the variable.

For example, if the graphical user interface contains this control on the $\ensuremath{\textit{Set Up}}$ tab:

• Enable Advanced Features

then you would expect to see something like this in the table below:

 Table 1
 Example Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Set Up	Enable Advanced Features	EnableAdvanced	True, False	Enables a set of optional features.

and you would set the variable remotely using:

```
ARSL syntax
------
arsl -a ipaddress -c "SetConfig 'EnableAdvanced' 'True'"
C# syntax
-------
remoteAte.SetConfig("EnableAdvanced", "True");
```


Here are the actual configuration variables and values used by this application:

NOTE Some of the values presented in the table below may not be available in certain configurations. Always perform a "test run" of your remote script using the application's graphical user interface to ensure the combinations of values in your program are valid.

NOTE

The file, ""ConfigInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

GUI Location	Label	Variable	Values	Description
Confgure	Auto Save Waveform	AutoSave	SINGLE, OFF, ON	Choose SINGLE to auto save the most recent test run. Each successive test run will overwrite the saved waveform so that only the most recent test run waveform will be saved in the project folder. Choose ON to auto save waveforms. The software will automatically save captured waveforms for all tests into the project folder. Choose OFF to disable auto save waveforms. *Warning*: Repeatedly saving waveforms for many tests will quickly fill up hard drive memory. If saving a lot of waveforms for regression testing it is recommended to save to a non-Windows hard drive partition or external drive.
Confgure	Automate Test Pattern Change	TestPatternAutomation	AUTO, MANUAL	Select "AUTO" to let the application automatically change the DUT's test pattern using the AUX OUT of the oscilloscope. Select "MANUAL" to manually change the DUT's test pattern.
Confgure	Clock recovery damping factor	CRDampFactor	(Accepts user-defined text), 0.707	Select or enter the damping factor for clock recovery.

Table 2 Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Confgure	Clock recovery loop bandwidth	CRLoopBW	(Accepts user-defined text), 4.9E+6	Select or enter the loop bandwidth for clock recovery.
Confgure	Clock recovery nominal data rate	CRDataRate	(Accepts user-defined text), 5.0E+9	Select or enter the nominal data rate for clock recovery.
Confgure	re Connection Type AddinTxConnectionType		1, 2, 3, 4, 7, 8	Identifies the channels to process. For Direct Connect, connect the first channel to the + signal and the second channel to the - signal.
Confgure	DFE Tap Mode	DFEMode	AUTO, MANUAL	Choose the test mode for DFE Tap
Confgure	DFE Tap Value	DFEValue	(Accepts user-defined text), 50e-3, 45e-3, 40e-3, 35e-3, 30e-3, 25e-3, 20e-3, 15e-3, 10e-3, 5e-3	Make sure you had select "MANUAL" from the DFE Tap Mode selection. Then select the preferred DFE tap value
Confgure	DNWfmFileCP0	DNWfmFileCP0	(Accepts user-defined text), None	Saved CP0 D- signal.
Confgure DNWfmFileCP0 DNWfmFileCP0		(Accepts user-defined text), None	Saved CP0 D- signal.	
Confgure	Confgure DNWfmFileCP1 DNWfmFileCP1		(Accepts user-defined text), None	Saved CP1 D- signal.
Confgure	DPWfmFileCP0	DPWfmFileCP0	(Accepts user-defined text), None	Saved CP0 D+ signal.
Confgure	DPWfmFileCP1	DPWfmFileCP1	(Accepts user-defined text), None	Saved CP1 D+ signal.

Table 2	Configuration Variables and Values (continued)
Table 2	Configuration Variables and Values (continued)

2 Configuration Variables and Values

GUI Location	Label	Variable	Values	Description
Confgure	De-emphasis test pattern	DeemphasisPattern	CP0, CP7, CP7/CP8	Select the test pattern to measure de-emphasis level. If only CP7 or CP0 is used, it is assumed the signal contains de-emphasis/pre-emphasis levels. If CP7/CP8 is selected, it is assumed the CP7 signal is the de-emphasised signal whereas the CP8 signal is the full swing signal.
Confgure	De-emphasis test setup	DeemMsg	default, custom	De-emphasis test message prompt
Confgure	DiffWfmFileCP0	DiffWfmFileCP0	(Accepts user-defined text), None	Saved CP0 differential signal.
Confgure	DiffWfmFileCP1	DiffWfmFileCP1	(Accepts user-defined text), None	Saved CP1 differential signal.
Confgure	Disable Pop-up Dialogs	DisablePopup	FALSE, TRUE	Select TRUE to disable pop-up dialogs that prompts user to change test pattern.
Confgure	Horizontal scalling for LBPM test	LBPMHor	(Accepts user-defined text), 30e-6, 50e-6, 80e-6, 100e-6, 150e-6, 200e-6, 250e-6	Please select the horizontal scalling for the LBPM test
Confgure	Include 1st LFPS Burst	LFPSStartBurst	1, 2	Specify whether to include the first burst when performing LFPS tests.
Confgure	LFPS Period (tPeriod)	LFPSPeriod	(Accepts user-defined text), 20e-9, 25e-9, 30e-9, 35e-9, 40e-9, 45e-9, 50e-9, 55e-9, 60e-9, 65e-9, 70e-9, 75e-9, 80e-9, 85e-9, 90e-9, 95e-9, 100e-9	Select or enter the period of the LFPS signal. This value will be used to generate LPFS pulses with similar period on the function generator.
Confgure	LFPS Test Mode	LFPSMode	FALSE, TRUE	Set to true if need to run the LFPS test with SigTest tool
Confgure	LFPS Trigger Level	LFPSTrigLevel	250.0E-3, 200.0E-3, 150.0E-3, 100.0E-3, 50.0E-3	Select the trigger level to capture LFPS signal.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Confgure	Measurement Bandwidth for 10G Signal, GHz	NoiseBWSSP	25.0E+9, 24.0E+9, 23.0E+9, 22.0E+9, 21.0E+9, 20.0E+9, 19.0E+9, 18.0E+9, 17.0E+9, 16.0E+9	(Limited availability [*]) Specify the bandwidth limit to use for all tests.
Confgure	Measurement Bandwidth for 5G Signal, GHz	NoiseBandwidth	13.0E+9, 12.5E+9, 12.0E+9, 10.0E+9, 8.0E+9, 7.0E+9, 6.5E+9, 6.0E+9, 5.5E+9, 5.0E+9, 4.5E+9, 4.0E+9, 3.5E+9, 3.0E+9, 2.5E+9, 2.0E+9, 1.5E+9, 1.0E+9	(Limited availability [*]) Specify the bandwidth limit to use for all tests.
Confgure	Measurement Threshold	MeasThresh	0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.10, 0.105, 0.11, 0.115, 0.12, 0.125	Select the measurement threshold level (upper/mid/lower).
Confgure	Measurement Trend cut-off frequency	CutOffFreq	1.98e+6, 1.5e+6, 825e+3, 633e+3, 73.8e+3	Select the cut off frequency to use for the measurement trend plot.
Confgure	Measurement Trend cut-off frequency For Modulation Rate Test	CutOffFreqModRate	1.98e+6, 1.5e+6, 825e+3, 633e+3, 221.4e+3, 147.6e+3, 73.8e+3	Select the cut off frequency to use for the measurement trend plot for modulation rate test only.
Confgure	Number of UI	NumUIGen2Test	3.0E+6, 2.0E+6, 1.0E+6, 500.0E+3, 250.0E+3, 100.0E+3, 50.0E+3	This is the minimum number of unit intervals used in the Eye-Width, TJ at BER-12, Maximum DJ , RMS RJ and Template tests. These measurements should be made using the compliance pattern at a sample size of at least 1E+6 (1,000,000) UI as specified in the USB 3.0 Specification Rev. 1.0. Specifying a greater number of UI will increase the test time and accuracy of the tests.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Confgure	Number of UI for Adc Eye Test	NumUIAdc	3.0E+6, 2.0E+6, 1.0E+6, 500.0E+3, 250.0E+3, 100.0E+3, 50.0E+3	This is the minimum number of unit intervals used when perform eye test using different Adc gain.
Confgure	Option IP or SICL address for 81134A	PGIPorSICL	(Accepts user-defined text), IP, SICL	Option IP or SICL address for 81134A
Confgure	Option IP or SICL address for 81150A	PFAIPorSICL	(Accepts user-defined text), IP, SICL	Option IP or SICL address for 81150A
Confgure	RJ Bandwidth	RJBW	NARR, WIDE	Select the RJ bandwidth.
Confgure	RJ DJ ISI Filter Lag	RJDJISILag	(Accepts user-defined text), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25	Select or enter the RJ DJ ISI Filter Lag.
Confgure	RJ DJ ISI Filter Lead	RJDJISILead	(Accepts user-defined text), 0, -1, -2, -3, -4, -5, -6, -7, -8, -9	Select or enter the RJ DJ ISI Filter Lead.
Confgure	RJ DJ Jitter BER Level	RJDJBER	E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18	Select the RJ DJ Jitter BER level.
Confgure	RJ DJ Pattern Length	RJDJPattLength	ARBITRARY, AUTO	Select the RJ DJ Pattern Length.
Confgure	SavedSignalPatter n	SavedSignalPattern	CP0/CP1, LFPS	Signal pattern of the saved signal.
Confgure	SavedSignalType	SavedSignalType	Differential, Single-ended	Signal type of the saved signal.
Confgure	Set IP address for 81134A	txtlPAddrPG	(Accepts user-defined text), None	Set IP address for 81134A
Confgure	Set IP address for 81150A	txtIPAddrPFA	(Accepts user-defined text), None	Set IP address for 81150A
Confgure	Set SICL address for 33250A	txtSICLAddrFA	(Accepts user-defined text), None	Set SICL address for 33250A

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Confgure	Set SICL address for E3631A	txtSICLAddrPS	(Accepts user-defined text), None	Set SICL address for E3631A
Confgure	Signal Check	Check EnableSignalCheck		When signal check is enabled, the input signal is pre-tested and verified to be within a reasonable range of timing and voltage limits. This can be useful for detecting problems like cabling errors before a test is run.
Confgure	Test Pattern	Test Pattern TestPattern		Select the test pattern to use. When "Both" is selected, CP1 is used for RJ measurement and CP0 is used for DJ measurement.
Confgure	Toggle Type	ToggleType	AC, SOSC, TRIGOUT, DPUL, HFOSC, ONE, 81150A, 33250A, 81134A, JBert	Toggle Option
Confgure	Total SCD Pattern	TotalSegment	(Accepts user-defined text), 4, 8, 12, 16, 20, 24, 28, 32	Select the total pattern for SCD1 and SCD2
Run Tests	Event RunEvent		(None), Fail, Margin < N, Pass	Names of events that can be used with the StoreMode=Event or RunUntil RunEventAction options
Run Tests	RunEvent=Margin < N: Minimum required margin %	RunEvent_Margin < N_MinPercent	Any integer in range: 0 <= value <= 100	Specify N using the 'Minimum required margin %' control.
Set Up	AdcMode	AdcMode	AUTO, AUTO_Quick, MANUAL	AdcMode
Set Up	DC Gain	SSPAdc	0, -1, -2, -3, -4, -5, -6	DC Gain Selection
Set Up	FixtureOpt	FixtureOpt	Agilent, USB-IF	Select the fixture
Set Up	InstrumentSetupC omplete	InstrumentSetupComplete	0.0, 1.0	InstrumentSetupComplete
Set Up	SSPOpt	SSPOpt	0.0, 1.0	Check box to turn on 10G option

 Table 2
 Configuration Variables and Values (continued)

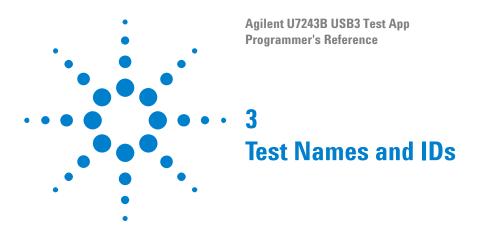

GUI Location			Values	Description
Set Up	USB30pt	USB30pt	0.0, 1.0	Check box to turn on 5G option
Set Up	cbInputSignalType	cbInput	Live signal, Saved signal	Input Signal Type Selection
Set Up	optDe-EmphasisM ode	DeEmpOpt	-3.5 dB, None	Select de-emphasis level for USB 3.0 test signal.
Set Up	optDe-embedMode	DeEmbedOpt	Normal Channel, MicroB, Tethered, None (HW channel)	Select whether to embed/de-embed signal or none.
Set Up	optDeviceType	DeviceUSBrev	Device, Host, Hub-Upstream, Hub-Downstream	Select the type of test point to use.
Set Up	optRefClock	RefClockOpt	SSC, Radio Friendly SSC, Clean Clock	Select reference clock for USB 3.0 test signal.
Set Up	pcbAgilent_SDA	SDATest	0.0, 1.0	Check box to enable tests using Agilent SDA.
Set Up	pcbAutomation	Automation	0.0, 1.0	Check box to automate external instrument.
Set Up	pcbCTLE_Enabled	CTLEEnabled	0.0, 1.0	Check box to turn CTLE ON/OFF
Set Up	pcbCustomTemplat e	TestPoint_CustomTemplate	0.0, 1.0	Select tests peformed using custom template
Set Up	pcbDebug	bug DebugMode		Check box to turn debug mode on/off
Set Up	pcbFarEndEye	TestPoint_FarEndEye	0.0, 1.0	Select tests peformed at the far end transmitter.
Set Up	p pcbNearEndEye TestPoint_NEEye		0.0, 1.0	Select tests performed at the near end transmitter package pins.
Set Up	pcbReceiver	TestPoint_Receiver	0.0, 1.0	Select tests peformed at the receiver.
Set Up	pcbUSB-IF_SigTest	USBSigTest	0.0, 1.0	Check box to enable tests using USB-IF SigTest
Set Up	txtCustomTemplat e	CustomTemplate	(Accepts user-defined text)	Optional user defined custom template
Set Up	txtDeviceID	txtDeviceID	(Accepts user-defined text)	Optional user defined device ID displayed in the test report.

 Table 2
 Configuration Variables and Values (continued)

GUI Location	Label	Variable	Values	Description
Set Up	txtFilePath	txtDeviceID	(Accepts user-defined text)	Input file path.
Set Up	txtSParamFile	SParamFile	(Accepts user-defined text)	User defined S-parameter file
Set Up	txtSSPSParamFile	SParamFileSSP	(Accepts user-defined text)	User defined SSP S-parameter file
Set Up	txtUserComments	txtUserComment	(Accepts user-defined text)	Optional user comments displayed in the test report.
[*] Limited av	Limited availability: Availability of this setting depends upon the oscilloscope model and installed license options.			

Table 2 Configurati	on Variables and Values	(continued)
---------------------	-------------------------	-------------

2 Configuration Variables and Values

The following table shows the mapping between each test's numeric ID and name. The numeric ID is required by various remote interface methods.

- Name The name of the test as it appears on the user interface **Select Tests** tab.
- Test ID The number to use with the RunTests method.
- Description The description of the test as it appears on the user interface **Select Tests** tab.

For example, if the graphical user interface displays this tree in the **Select Tests** tab:

- All Tests
 - Rise Time
 - Fall Time

then you would expect to see something like this in the table below:

 Table 3
 Example Test Names and IDs

Name	Test ID	Description
Fall Time	110	Measures clock fall time.
Rise Time	100	Measures clock rise time.

and you would run these tests remotely using:

Here are the actual Test names and IDs used by this application:

NOTE

The file, ""TestInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Table 4 Test IDs and Names

Name	TestID	Description
10G Far End Differential Output Voltage (CTLE ON)	26410	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Differential Output Voltage (SDA)	26419	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Differential Output Voltage (SDA)(CTLE ON)	23418	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Maximum Deterministic Jitter (CTLE ON)	26920	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Maximum Deterministic Jitter (SDA)	26929	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Maximum Deterministic Jitter (SDA)(CTLE ON)	23928	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Random Jitter (CTLE ON)	26820	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Random Jitter (SDA)	26829	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Random Jitter (SDA)(CTLE ON)	23828	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.

Name	TestID	Description
10G Far End Template Test (CTLE ON)	26100	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
10G Far End Template Test (SDA)	26109	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
10G Far End Template Test (SDA)(CTLE ON)	23108	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
10G Far End Total Jitter at BER-12 (CTLE ON)	26960	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-18 of the USB 3.1 specification.
10G Far End Total Jitter at BER-12 (SDA)	26969	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Far End Total Jitter at BER-12 (SDA)(CTLE ON)	23968	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G LBPS tLFPS_0	2170	The purpose of this test is to measure tLFPS-0 as specified in table 6-32 of the USB 3.1 specification.
10G LBPS tLFPS_1	2180	The purpose of this test is to measure tLFPS-1 as specified in table 6-32 of the USB 3.1 specification.
10G LBPS tPWM	2160	The purpose of this test is to measure tPWM as specified in table 6-32 of the USB 3.1 specification.
10G LFPS AC Common Mode Voltage	12140	The purpose of this test is to verify that the maximum voltage from Txp + Txn for both time and amplitude is within the limits as specified in Table 6-28 of the USB 3.1 specification
10G LFPS Burst Width (tBurst)	12110	The purpose of this test is to verify that the burst width (tBurst) of the Polling.LFPS signal is within the conformance limits specified in Table 6-29 of the USB 3.1 Specification, version 1.0
10G LFPS Duty cycle	12130	The purpose of this test is to verify that the duty cycle of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
10G LFPS Fall Time	12125	The purpose of this test is to verify that the fall time of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
10G LFPS Peak-Peak Differential Output Voltage	12100	The purpose of this test is to verify that the peak-to-peak differential output voltage of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
10G LFPS Period (tPeriod)	12105	The purpose of this test is to verify that the period of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
10G LFPS Repeat Time Interval (tRepeat)	12115	The purpose of this test is to verify that the time interval when the next LFPS burst is transmitted (tRepeat) is within the conformance limits specified in Table 6-29 of the USB 3.1 Specification, version 1.0
10G LFPS Rise Time	12120	The purpose of this test is to verify that the rise time of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
10G Near End Differential Output Voltage (SDA)	25469	The purpose of this test is to verify that the differential output voltage measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-17 of the USB 3.1 specification.
10G Near End Maximum Deterministic Jitter (SDA)	25929	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
10G Near End Random Jitter (SDA)	25829	The purpose of this test is to verify that the measured random jitter, Rj measured at the near end of the transmitter (TPO) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
10G Near End Template Test (SDA)	25169	The purpose of this test is to perform an eye mask test at the near end of the transmitter (TPO) using the specifications in section 6.7.1 tables 6-17 and 6-18 of the USB 3.1 specification.
10G Near End Total Jitter at BER-12 (SDA)	25969	The purpose of this test is to verify that the measured total jitter, Tj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
10G SCD Common Mode Voltage	2208	The purpose of this test is to verify that the SCD Common Mode as specified section 6.7.1, Table 6-18 of the USB 3.1 specification.
10G SCD Differential Voltage	2207	The purpose of this test is to verify that the SCD differential voltage as specified section 6.7.1, Table 6-17 of the USB 3.1 specification.
10G SCD Duty Cycle	2203	The purpose of this test is to verify that the SCD Duty Cycle as specified section 6.9, Table 6-28 of the USB 3.1 specification.
10G SCD Fall Time	2202	The purpose of this test is to verify that the SCD Fall Time as specified section 6.9, Table 6-28 of the USB 3.1 specification.
10G SCD Period	2204	The purpose of this test is to verify that the SCD Period as specified section 6.9, Table 6-28 of the USB 3.1 specification.
10G SCD Rise Time	2201	The purpose of this test is to verify that the SCD Rise Time as specified section 6.9, Table 6-28 of the USB 3.1 specification.
10G SCD tBurst	2206	The purpose of this test is to verify that the SCD tBurst as specified section 6.9, Table 6-29 of the USB 3.1 specification.
10G SCD tRepeat	2205	The purpose of this test is to verify that the SCD tRepeat as specified section 6.9, Table 6-29 of the USB 3.1 specification.
10G SSC Modulation Rate	12308	The purpose of this test is to verify that the measured SSC modulation rate is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
10G SSC df/dt	2512	The purpose of this test is to verify that the maximum df/dt is never exceeded as specified in Table 6-17 of the USB 3.1 Specification.
10G Short Channel Differential Output Voltage	42241	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
10G Short Channel Maximum Deterministic Jitter	42292	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.

T.I.I. A		(
Table 4	Test IDs and Names	(continuea)

Name	TestID	Description
10G Short Channel Random Jitter	42282	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G Short Channel Template Test	42210	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
10G Short Channel Total Jitter at BER-12	42296	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
10G SuperSpeedPlus Capability Declaration (SCD1)	2150	The purpose of this test is to verify that the SCD pattern as specified section 6.9.4.2 of the USB 3.1 specification. The SCD pattern is 0010.
10G SuperSpeedPlus Capability Declaration (SCD2)	2190	The purpose of this test is to verify that the SCD pattern as specified section 6.9.4.2 of the USB 3.1 specification. The SCD pattern is 1101
10G TSSC-Freq-Dev-Max	12311	The purpose of this test is to verify that the measured SSC deviation is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
10G TSSC-Freq-Dev-Min	12307	The purpose of this test is to verify that the measured SSC deviation is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
10G Unit Interval	12300	The purpose of this test is to verify that the unit interval measured at the near end of the transmitter (TP0) when no SSC is present is within the conformance limits specified in Table 6-17 of the USB 3.1 Specification.
5G Far End Differential Output Voltage	2241	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Differential Output Voltage (CTLE ON)	22410	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Differential Output Voltage (SDA)	22419	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
5G Far End Differential Output Voltage (SDA)(CTLE ON)	22418	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Maximum Deterministic Jitter	2292	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Maximum Deterministic Jitter (CTLE ON)	22920	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Maximum Deterministic Jitter (SDA)	22929	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Maximum Deterministic Jitter (SDA)(CTLE ON)	22928	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Random Jitter	2282	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Random Jitter (CTLE ON)	22820	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Random Jitter (SDA)	22829	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Random Jitter (SDA)(CTLE ON)	22828	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Template Test	2210	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
5G Far End Template Test (CTLE ON)	22100	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
5G Far End Template Test (SDA)	22109	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
5G Far End Template Test (SDA)(CTLE ON)	22108	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
5G Far End Total Jitter at BER-12	2296	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Total Jitter at BER-12 (CTLE ON)	22960	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Total Jitter at BER-12 (SDA)	22969	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Far End Total Jitter at BER-12 (SDA)(CTLE ON)	22968	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G LFPS AC Common Mode Voltage	2140	The purpose of this test is to verify that the maximum voltage from Txp + Txn for both time and amplitude is within the limits as specified in Table 6-28 of the USB 3.1 specification
5G LFPS Burst Width (tBurst)	2110	The purpose of this test is to verify that the burst width (tBurst) of the Polling.LFPS signal is within the conformance limits specified in Table 6-29 of the USB 3.1 Specification, version 1.0
5G LFPS Duty cycle	2130	The purpose of this test is to verify that the duty cycle of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
5G LFPS Fall Time	2125	The purpose of this test is to verify that the fall time of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
5G LFPS Peak-Peak Differential Output Voltage	2100	The purpose of this test is to verify that the peak-to-peak differential output voltage of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
5G LFPS Period (tPeriod)	2105	The purpose of this test is to verify that the period of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
5G LFPS Repeat Time Interval (tRepeat)	2115	The purpose of this test is to verify that the time interval when the next LFPS burst is transmitted (tRepeat) is within the conformance limits specified in Table 6-29 of the USB 3.1 Specification, version 1.0
5G LFPS Rise Time	2120	The purpose of this test is to verify that the rise time of the LFPS signal is within the conformance limits specified in Table 6-28 of the USB 3.1 Specification, version 1.0
5G Near End Differential Output Voltage	2346	The purpose of this test is to verify that the differential output voltage measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-17 of the USB 3.1 specification.
5G Near End Differential Output Voltage (SDA)	23469	The purpose of this test is to verify that the differential output voltage measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-17 of the USB 3.1 specification.
5G Near End Maximum Deterministic Jitter	2392	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G Near End Maximum Deterministic Jitter (SDA)	23929	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G Near End Random Jitter	2382	The purpose of this test is to verify that the measured random jitter, Rj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G Near End Random Jitter (SDA)	23829	The purpose of this test is to verify that the measured random jitter, Rj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G Near End Template Test	2316	The purpose of this test is to perform an eye mask test at the near end of the transmitter (TPO) using the specifications in section 6.7.1 tables 6-17 and 6-18 of the USB 3.1 specification.

 Table 4
 Test IDs and Names (continued)

Name	TestID	Description
5G Near End Template Test (SDA)	23169	The purpose of this test is to perform an eye mask test at the near end of the transmitter (TPO) using the specifications in section 6.7.1 tables 6-17 and 6-18 of the USB 3.1 specification.
5G Near End Total Jitter at BER-12	2396	The purpose of this test is to verify that the measured total jitter, Tj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G Near End Total Jitter at BER-12 (SDA)	23969	The purpose of this test is to verify that the measured total jitter, Tj measured at the near end of the transmitter (TP0) is within the limits as specified in Table 6-18 of the USB 3.1 specification.
5G SSC Modulation Rate	2308	The purpose of this test is to verify that the measured SSC modulation rate is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
5G SSC Slew Rate	2310	The purpose of this test is to ensure the combination of SSC and all other jitter sources within the bandwidth of the CDR must not exceed the allowed slew rate as listed in Table 6-17.
5G Short Channel Differential Output Voltage	32241	The purpose of this test is to verify that the differential output voltage measured at TP1 meets the minimum eye height as specified in Table 6-19 of the USB 3.1 specification.
5G Short Channel Maximum Deterministic Jitter	32292	The purpose of this test is to verify that the measured deterministic jitter, Dj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Short Channel Random Jitter	32282	The purpose of this test is to verify that the measured random jitter, Rj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.
5G Short Channel Template Test	32210	The purpose of this test is to perform an eye mask test at TP1 using the eye mask template as specified in table 6-19 of the USB 3.1 specification.
5G Short Channel Total Jitter at BER-12	32296	The purpose of this test is to verify that the measured total jitter, Tj measured at TP1 is within the limits as specified in Table 6-19 of the USB 3.1 specification.

 Table 4
 Test IDs and Names (continued)

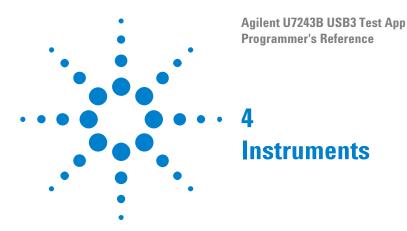

Name	TestID	Description
5G TSSC-Freq-Dev-Max	2311	The purpose of this test is to verify that the measured SSC deviation is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
5G TSSC-Freq-Dev-Min	2307	The purpose of this test is to verify that the measured SSC deviation is within the conformance limits specified in Table 6-16 of the USB 3.1 Specification.
5G Unit Interval	2300	The purpose of this test is to verify that the unit interval measured at the near end of the transmitter (TP0) when no SSC is present is within the conformance limits specified in Table 6-17 of the USB 3.1 Specification.
CTLE_Adc Selection	90001	The purpose of this test is to run the eye folding and select the best DC gain for eye opening
De-emphasis Ratio	2410	The purpose of this test is to measure the transmitter de-emphasis ratio.
De-emphasis calibration	3200	The purpose of this test is to calibrate the N4903B/N4916A to set 3dB de-emphasis level.
Deemphasis	3010	The purpose of this test is to measure the transmitter preshoot
HF Sinusoidal Jitter Calibration	3220	The purpose of this test is to calibrate the N4903B to set the required RJ values.
LF Sinusoidal Jitter Calibration	3210	The purpose of this test is to calibrate the N4903B to set the required SJ values.
LFPS Response VTX-DIFF-PP-LFPS 1000mV, Duty Cycle 40%	3120	The purpose of this test is to verify that the DUT low frequency periodic signal receiver recognizes LFPS signalling with voltage swings and duty cycle that are at the limits of what the specification allows.
LFPS Response VTX-DIFF-PP-LFPS 1000mV, Duty Cycle 60%	3130	The purpose of this test is to verify that the DUT low frequency periodic signal receiver recognizes LFPS signalling with voltage swings and duty cycle that are at the limits of what the specification allows.
LFPS Response VTX-DIFF-PP-LFPS 1200mV, Duty Cycle 50%	3110	The purpose of this test is to verify that the DUT low frequency periodic signal receiver recognizes LFPS signalling with voltage swings and duty cycle that are at the limits of what the specification allows.
LFPS Response VTX-DIFF-PP-LFPS 800mV, Duty Cycle 50%	3100	The purpose of this test is to verify that the DUT low frequency periodic signal receiver recognizes LFPS signalling with voltage swings and duty cycle that are at the limits of what the specification allows.

 Table 4
 Test IDs and Names (continued)

3 Test Names and IDs

Name	TestID	Description
Peak-peak Differential Output Voltage Using CP8	2400	The purpose of this test is to measure the peak-to-peak differential voltage swing using compliance pattern CP8.
Preshoot	3011	The purpose of this test is to measure the transmitter de-emphasis
Tx AC Common Mode Voltage Active	2420	The purpose of this test is to verify that the maximum mismatch from Txp + Txn for both time and amplitude is within the limits as specified in Table 6-18 of the USB 3.1 specification

 Table 4
 Test IDs and Names (continued)

The following table shows the instruments used by this application. The name is required by various remote interface methods.

- Instrument Name The name to use as a parameter in remote interface commands.
- Description The description of the instrument.

For example, if an application uses an oscilloscope and a pulse generator, then you would expect to see something like this in the table below:

Table 5 Example Instrument Information

Name	Description
scope	The primary oscilloscope.
Pulse	The pulse generator used for Gen 2 tests.

and you would be able to remotely control an instrument using:

```
queryOptions.Query = "[scpi query]";
queryOptions.Instrument = "[instrument name]";
queryOptions.Timeout = [timeout];
remoteAte.SendScpiQuery(queryOptions);
```


4 Instruments

Here are the actual instrument names used by this application:

NOTE

The file, ""InstrumentInfo.txt"", which may be found in the same directory as this help file, contains all of the information found in the table below in a format suitable for parsing.

Table 6Instrument Names

Instrument Name	Description
FAGenerator	FAGenerator
JBert	JBert
PFAGenerator	PFAGenerator
pulsegen	pulsegen
pwrsupply	pwrsupply
scope	scope

Index

C

configuration variables and values, 11

IDs and names of tests, 21 instrument names, 33

L

licensing, 9

Ν

names and IDs of tests, 21 names of instruments, 33 notices, 3

Ρ

programming, introduction to, 7

R

Remote Programming Toolkit, 8

T

test names and IDs, 21

V

variables and values, configuration, 11

Index